Archimedes’ Principle: Body Buoyancy

Any object wholly or partially immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. This is Archimedes’ Principle.

This article—the ninth in a series—describes how to approximate buoyant and gravitational forces on a body immersed in a fluid with varying density. Part 1 summarized fluid dynamics; part 2 surveyed fluid simulation techniques, and part 3 and part 4 presented a vortex–particle fluid simulation with two-way fluid–body interactions that runs in real time. Part 5 profiled and optimized that simulation code. Part 6 described a differential method for computing velocity from vorticity, and part 7 showed how to integrate a fluid simulation into a typical particle system. Part 8 explained how a vortex-based fluid simulation can handle variable density in a fluid.

This article introduces features to simulation code presented in previous articles: Now, bodies immersed within the fluid float or sink depending on the mass of fluid the body displaces. This new feature augments how visual effects have a two-way interaction with physical objects in the simulation.

The Weight of Fluid Displaced by an Object

How do you express Archimedes’ principle in a form usable by a simulation?

This formula expresses the net force acting on a body immersed within a fluid with constant density:

\[
F = m_{\text{body}} g - \rho_{\text{fluid}} V_{\text{body}} g
\]

Net Body weight buoyancy
Here, m_{body} is the mass of the body, g is the acceleration caused by gravity, ρ_{fluid} is the density of the fluid, and V_{body} is the volume of the body.

If the body is only partially submerged, then V_{body} is the volume of the portion of the body submerged, as Figure 1 shows.

Figure 2. Buoyancy of a partially submerged body

Mass of Fluid Displaced for a Fluid with Variable Density

Although the formula above works fine for a body fully submerged in a fluid with constant density, it needs modification for a body either partially submerged or (equivalently) submerged in a fluid with varying density. In that case, you effectively need to subdivide the fluid mass displaced into multiple terms as follows:

$$m_{displaced} = \rho_{fluid,1}V_{body,1} + \rho_{fluid,2}V_{body,2} + \ldots$$

Fluid mass portion portion

ρ_{fluid} displaced V_{body} 1 2

In the limit of continuous density variation, the sum above would become an integral. But a computer simulation would have to discretize that integral, so leave it as a sum. Figure 3 depicts a case in which the fluid has two different density values.
Adding Body Buoyancy to the Simulation

To add the effects of body buoyancy, the simulation must compute gravity and buoyancy forces for each body. From Part 7, the simulation code already has density, which is used to compute fluid buoyancy. The augmented simulation presented in this article reuses that density grid to approximate the mass of fluid displaced by the body.

The simulation code requires these modifications:

- Add a method named `BuoyBodies` to `FluidBodySim`.
- Call `FluidBodySim::BuoyBodies` from `PclOpFluidBodyInteraction::Operate`.

For simplicity, the code for `FluidBodySim::BuoyBodies` samples fluid density at a fixed number of locations within the body region and uses the average of those samples as the average density of the fluid displaced by the body. It also treats the body as though the volume of body associated with each sample were the same.

Note: This is a drastic simplification and can be made more sophisticated if required, but this article focuses on visual effects and therefore assumes that the rigid body simulation needs only a modest amount of impact from the particle system. Typically, if you want more sophisticated rigid body physics, you would use a proper physics engine to compute forces. In contrast, this technique is meant to tie results from the particle system into an existing physics engine by computing a quick-and-dirty approximation of buoyancy and feeding that force to the physics engine via a routine like `ApplyBodyForce`.

![Figure 2](image-url)
void FluidBodySim::BuoyBodies(Vector< Particle > & particles,
 const UniformGrid< float > & densityDeviationGrid,
 float ambientFluidDensity
 const Vec3 & gravityAcceleration, const Vector< RigidBody * > & rigidBodies)
{
 const size_t numBodies = rigidBodies.Size();
 const size_t numParticles = particles.Size();
 const Vec3 gravityDir = gravityAcceleration.Direction();

 for(unsigned uBody = 0 ; uBody < numBodies ; ++ uBody)
 { // For each body in the simulation...
 RbSphere & rSphere = (RbSphere &) * rigidBodies[uBody] ;
 // Compute profile of fluid density around body
 float densityDeviationAtQueryPoint ; // fluid density at query points.
 float densityDeviationSum ; // Average fluid density in region of body.
 float divisor = 1.0f ;
 // Sample fluid density at multiple places within the body region.
 Vec3 vQueryPos = rSphere.mPosition ;
 if(densityDeviationGrid.Encompasses(vQueryPos))
 {
 densityDeviationGrid.Interpolate(densityDeviationSum , vQueryPos) ;
 }
 vQueryPos = rSphere.mPosition + rSphere.mRadius * gravityDir ;
 if(densityDeviationGrid.Encompasses(vQueryPos))
 {
 densityDeviationGrid.Interpolate(densityDeviationAtQueryPoint , vQueryPos) ;
 densityDeviationSum += densityDeviationAtQueryPoint ;
 divisor += 1.0f ;
 }
 vQueryPos = rSphere.mPosition - rSphere.mRadius * gravityDir ;
 if(densityDeviationGrid.Encompasses(vQueryPos))
 {
 densityDeviationGrid.Interpolate(densityDeviationAtQueryPoint , vQueryPos) ;
 densityDeviationSum += densityDeviationAtQueryPoint ;
 divisor += 1.0f ;
 }
 // Average fluid density samples.
 const float densityAverage = densityDeviationSum / divisor + ambientFluidDensity ;
 // Approximate body buoyancy force.
 const float massDisplaced = densityAverage * rSphere.GetVolume() ;
 const float bodyMass = 1.0f / rSphere.GetInverseMass() ;
 // Sum buoyancy and gravity forces.
 const Vec3 netForce = gravityAcceleration * (bodyMass - massDisplaced) ;
 rSphere.ApplyBodyForce(netForce) ;
 }
}

Speeding Up the Simulation

Computing body buoyancy costs some CPU time (see below to see exactly how much). To recover that cost, use Intel® Threading Building Blocks™ (TBB) to parallelize one of the other computations.

According to performance profiles, the slowest serial process is the one that computes diffusion of vorticity, DiffuseVortonPSE. Part of that process is embarrassingly parallel, because each vorton modified only needs Read access to the vortons in its neighborhood.
The following steps lead to a parallelized diffusion calculation:

1. Make a new routine called `DiffuseVorticityPSESlice`.
2. Create a new class called `VortonSim_DiffuseVorticityPSE_TBB`.
3. Change `DiffuseVorticityPSE` to use the refactored code.

Parallelized Vorticity Diffusion Code

Extract the for loops from `DiffuseVorticityPSE` into a new routine called `DiffuseVorticityPSESlice`. This routine takes start and end indices supplied by TBB.

```cpp
void VortonSim::DiffuseVorticityPSESlice( const float & timeStep,
                                          const UniformGrid< Vector< unsigned > > & ugVortIdx , size_t izStart , size_t izEnd )
{
    // Exchange vorticity with nearest neighbors
    const size_t   & nx     = ugVortIdx.GetNumPoints( 0 ) ;
    const size_t   & ny     = ugVortIdx.GetNumPoints( 1 ) ;
    const size_t   & nz     = ugVortIdx.GetNumPoints( 2 ) ;
    const size_t   & nxm1   = nx - 1 ;
    const size_t   & nym1   = ny - 1 ;
    const size_t   & nxy    = nx * ny ;
    const size_t   & nzl    = nz - 1 ;

    size_t idx[3] ;
    {
        // For all points along z within a region...
        ...
    }
}
```

The new class, `VortonSim_DiffuseVorticityPSE_TBB`, which calls `VortonSim::DiffuseVorticityPSESlice`, takes the form of a function, as TBB requires:
class VortonSim_DiffuseVorticityPSE_TBB
{
 float mTimeStep; ///< Duration of time step
 VortonSim * mVortonSim; ///< VortonSim object
 const UniformGrid< Vector<unsigned> > & mUgVortIdx; ///< Grid of vorton indices
public:
 void operator() (const tbb::blocked_range<size_t> & r) const
 {
 // Compute subset of vorticity diffusion.
 mVortonSim->DiffuseVorticityPSESlice(mTimeStep, mUgVortIdx, r.begin(), r.end());
 }
 VortonSim_DiffuseVorticityPSE_TBB(float timeStep, VortonSim * pVortonSim, const UniformGrid< Vector<unsigned> > & ugVortIdx)
 : mTimeStep(timeStep), mVortonSim(pVortonSim), mUgVortIdx(ugVortIdx)
 {}
};

Change DiffuseVorticityPSE to use the refactored code, via TBB’s parallel_for:
void VortonSim::DiffuseVorticityPSE(const float & timeStep , const unsigned & uFrame)
{
 // Phase 1: Partition vortons
 // Create a spatial partition for the vortons.
 // Each cell contains a dynamic array of integers
 // whose values are offsets into mVortons.
 UniformGrid< Vector< unsigned > > ugVortIdx(mGridTemplate) ;
 ugVortIdx.Init() ;
 const size_t numVortons = mVortons.Size() ;
 for(unsigned offset = 0 /* Start at 0th vorton */ ; offset < numVortons ; ++ offset)
 {
 // For each vorton...
 Vorton & rVorton = mVortons[offset] ;
 // Insert the vorton's offset into the spatial partition.
 ugVortIdx[rVorton.mPosition].PushBack(offset) ;
 }
 // Phase 2: Exchange vorticity with nearest neighbors
 const unsigned & nz = ugVortIdx.GetNumPoints(2) ;
 const unsigned nzml = nz - 1 ;
 // Estimate grain size based on size of problem and number of processors.
 const size_t grainSize = MAX2(1 , nzml / gNumberOfProcessors) ;
 // Compute vorticity diffusion using threading building blocks
 parallel_for(tbb::blocked_range<size_t>(0 , nzml , grainSize) ,
 VortonSim_DiffuseVorticityPSE_TBB(timeStep , this , ugVortIdx)) ;
}

Results

Figure 3 shows a simulation with a ball whose density lies between that of the light fluid (at the top, colored red) and the heavier fluid (at the bottom, colored blue).

Figure 3. Ball buoys in a density-stratified fluid

Performance

Performance profiles reveal that the body buoyancy computation uses well under 1 percent of the total time. Typical durations for that computation, for these simulations, ran for only 2 microseconds per frame on even modest hardware like a computer running an Intel®
Pentium® 4 processor running at 3.0 GHz, with significantly faster performance on an Intel® Core™2 Duo running at 2.6 GHz.

Table 1 shows durations for various processes while running the simulation on an Intel® Xeon® X5660 process running at 2.8 GHz.

Table 1. Run Durations for Processes on an Intel® Xeon® processor

<table>
<thead>
<tr>
<th>Threads</th>
<th>Buoy (ms)</th>
<th>Diffuse (ms)</th>
<th>Total (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000733</td>
<td>0.323733</td>
<td>33.6</td>
</tr>
<tr>
<td>2</td>
<td>0.000733</td>
<td>0.318233</td>
<td>19.0</td>
</tr>
<tr>
<td>3</td>
<td>0.000733</td>
<td>0.287</td>
<td>12.7</td>
</tr>
<tr>
<td>4</td>
<td>0.000733</td>
<td>0.257373</td>
<td>11.9</td>
</tr>
<tr>
<td>5</td>
<td>0.000733</td>
<td>0.218144</td>
<td>11.9</td>
</tr>
<tr>
<td>6</td>
<td>0.000733</td>
<td>0.207145</td>
<td>11.4</td>
</tr>
</tbody>
</table>

Coming Up

Future articles will build on this installment, adding *convection* (thermal expansion and diffusion) and *combustion* (generating heat by chemical processes). These additions will give the code the ability to simulate smoldering and burning.